skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Singla, Adish"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 1, 2025
  2. Free, publicly-accessible full text available December 1, 2025
  3. Machine teaching has traditionally been constrained by the assumption of a fixed learner’s model. In this paper, we challenge this notion by proposing a novel black-box Markov learner model, drawing inspiration from decision psychology and neuroscience where learners are often viewed as black boxes with adaptable parameters. We model the learner’s dynamics as a Markov decision process (MDP) with unknown parameters, encompassing a wide range of learner types studied in machine teaching literature. This approach reduces teaching complexity to finding an optimal policy for the underlying MDP. Building on this, we introduce an algorithm for teaching in this black-box setting and provide an analysis of teaching costs under different scenarios. We further establish a connection between our model and two types of learners in psychology and neuroscience, the epiphany learner and the non-epiphany learner, linking them with discounted and non-discounted black-box Markov learners respectively. This alignment offers a psychologically and neuroscientifically grounded perspective to our work. Supported by numerical study results, this paper delivers a significant contribution to machine teaching, introducing a robust, versatile learner model with a rigorous theoretical foundation. 
    more » « less
  4. We study the problem of active learning with the added twist that the learner is assisted by a helpful teacher. We consider the following natural interaction protocol: At each round, the learner proposes a query asking for the label of an instance xq, the teacher provides the requested label {xq,yq} along with explanatory information to guide the learning process. In this paper, we view this information in the form of an additional contrastive example ({xc,yc}) where xc is picked from a set constrained by xq (e.g., dissimilar instances with the same label). Our focus is to design a teaching algorithm that can provide an informative sequence of contrastive examples to the learner to speed up the learning process. We show that this leads to a challenging sequence optimization problem where the algorithm's choices at a given round depend on the history of interactions. We investigate an efficient teaching algorithm that adaptively picks these contrastive examples. We derive strong performance guarantees for our algorithm based on two problem-dependent parameters and further show that for specific types of active learners (e.g., a generalized binary search learner), the proposed teaching algorithm exhibits strong approximation guarantees. Finally, we illustrate our bounds and demonstrate the effectiveness of our teaching framework via two numerical case studies. 
    more » « less
  5. null (Ed.)
  6. null (Ed.)
  7. null (Ed.)